MIFP RESEARCH MEMBERS' PUBLICATIONS

MEMBERS' PUBLICATIONS

File: Interactions of neutral semipermeable shells in asymmetric electrolyte solutions

pdf.png
Uploaded:
17.10.12
Modified:
17.10.12
File Size:
423 KB

Vladimir Lobaskin, Artem N. Bogdanov and Olga I. Vinogradova


We study the ionic equilibria and interactions of neutral semi-permeable spherical shells immersed in electrolyte solutions, including polyions. Although the shells are uncharged, only one type of ion of the electrolyte can permeate them, thus leading to a steric charge separation in the system. This gives rise to a charge accumulation inside the shell and a build up of concentration-dependent shell potential, which converts into a disjoining pressure between the neighboring shells. These are quantified using the Poisson–Boltzmann and integral equations theories. In particular, we show that in a case of low valency electrolytes, interactions between shells are repulsive and can be sufficiently strong to stabilize the shell dispersion. In contrast, the charge correlation effects in solutions of polyvalent ions result in attractions between the shells, with can lead to their aggregation.

We use cookies to improve our website and your experience when using it. Cookies used for the essential operation of the site have already been set. To find out more about the cookies we use and how to delete them, see our privacy policy.

I accept cookies from this site.

EU Cookie Directive Module Information