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Abstract

We establish a correspondence between the resummation of world lines and the diagonalization of the
Hamiltonian for a strongly correlated electronic system. For this purpose, we analyze the functional inte-
grals for the partition function and the correlation functions invoking a slave boson representation in the
radial gauge. We show in the spinless case that the Green’s function of the physical electron and the pro-
jected Green’s function of the pseudofermion coincide. Correlation and Green’s functions in the spinful case
involve a complex entanglement of the world lines which, however, can be obtained through a strikingly
simple extension of the spinless scheme. As a toy model we investigate the two-site cluster of the single
impurity Anderson model which yields analytical results. All expectation values and dynamical correlation
functions are obtained from the exact calculation of the relevant functional integrals. The hole density, the
hole auto-correlation function and the Green’s function are computed, and a comparison between spinless
and spin 1/2 systems provides insight into the role of the radial slave boson field. In particular, the ex-
act expectation value of the radial slave boson field is finite in both cases, and it is not related to a Bose
condensate.
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1. Introduction

In contemporary solid state research, strongly correlated electrons comprise the most fasci-
nating albeit intangible physical systems. They cover a wide range of phenomena, including
high temperature superconductivity, colossal magnetoresistance, aspects of the fractional quan-
tum Hall effect, and even electronic reconstruction in oxide electronic devices which are built on
interfaces of strongly correlated films. Whereas their importance is generally perceived, a funda-
mental comprehension is still not achieved, especially for high-temperature superconductivity.

This unfortunate absence of a well established theoretical scheme or even solution is not
surprising: strong electronic correlations are based on (sufficiently strong) local interactions in
real space but the Fermi surface, the concept on which the physics of metals is firmly rooted, is
defined and understood in momentum space. Correspondingly, a theoretical investigation is either
built on momentum or real space approaches which allow to treat either the kinetic (band) term or
the interaction accurately. However, a momentum space weak coupling approach is insufficient
to generate the desired new energy scales and fix points whereas standard perturbation theory
from the highly degenerate local (atomic) limit suffers from severe drawbacks [1].

Nevertheless, many effective strong coupling theories expand, in a generalized sense, with
respect to local models. A model with a single local interaction term is the Anderson impurity
model. It is the prominent strong-coupling many-body model which can still be solved exactly
(with certain restrictions) and which has been understood in basically all aspects (see, for ex-
ample [2–6]). It may justly be seen as the paradigm of a strongly correlated many-body system.
A successful scheme to investigate lattice models with on-site interactions originates from a
self-consistent extension of the Anderson model. The self-consistency is generated through a
dynamical mean-field theory (DMFT) which singles out a site with strong local interaction; this
site couples to an electronic bath, the effective medium, the local density of states of which
is calculated self-consistently [7,8]. Actually, the DMFT is exact for infinite space dimensions,
a limit which was introduced in Ref. [9] for correlated electron systems. However, it is missing
the spatial correlations. In recent years it has been devised to treat clusters which can couple to
various bath systems in order to investigate correlations with a spatial extension of the cluster
size [10–14].

In our theoretical study we will focus on a different approach, the slave boson technique [15–
17]. The formalism entails a local decomposition of electronic excitations into charge and spin
components. Electron creation and annihilation operators are thereby represented by composite
operators which separate into canonical operators with bosonic and fermionic character. However
these operators are enslaved in the sense that their respective number operators have to fulfill a
local constraint. The original idea was to decouple spin and charge degrees of freedom; other,
modified schemes attribute to each type of excitation a bosonic mode which allows to study
the correlated system in a saddle point approximation [17–19]. This mean field approach has
been successful when set against numerical simulations: ground state energies [20] and charge
structure factors show excellent agreement [21], as the procedure is exact in the large degeneracy
limit [18,22].

While the saddle point approximation allows to calculate translationally invariant expectation
values in momentum space, the corresponding mean field solution is not a priori legitimate.
The objection is concerned with the local decomposition of the electron field into fermion and
slave boson components. This implies that the model acquires a local gauge invariance with the
consequence that Elitzur’s theorem [23] prevents the (slave) bosonic fields to acquire a non-zero
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expectation value. In fact, it is the phase fluctuations of the boson field which suppress the finite
value or condensation of these fields.

One alternative to avoid such a condensation has been devised by Kroha, Wölfle, and cowork-
ers [24,25]. In their approach the local gauge invariance is guaranteed through Ward identities in
a conserving approximation. The projection onto the physical sector of the Fock space is achieved
with an Abrikosov procedure by sending the Lagrange multiplier of the constraint to infinity.2

The other alternative is to use a radial decomposition of the bosonic field [27], the details of
which were presented in a previous paper by two of the authors [28]. In the limit of large on-site
interaction, the bosonic fields in radial representation reduce to their respective (real) amplitude
as the time derivatives of the conjugate phase can be absorbed in a time-dependent Lagrange
multiplier field.

In this article we provide a scheme for the solution of cluster models in radial slave-boson
representation. We present in sufficient detail the calculation of correlation and Green’s functions
for a two-site cluster of the single impurity Anderson model, in order to exemplify our scheme.
Although the model can be diagonalized without slave boson technique we esteem the explicit
solution in the radial decomposition of considerable significance. First, it relates the world line
expansion of slave boson path integrals to the quantum states in the Fock space, in particular
for entangled states. This is achieved through a decomposition of the fermionic determinant into
resolvents at each time step. Second, it allows to compare these exact results (e.g., for the slave
boson amplitude) to saddle point evaluations and to assess their validity [29].

The article is organized as follows: in Section 2, we introduce the functional integral formula-
tion of the two-site cluster model. We give expressions for the action, partition function and hole
density as well as for the hole auto-correlation function in terms of radial slave bosons. The spin-
less system is studied first in Section 3 where, through the derivation of the partition function, we
show how to proceed from a world line representation to the representation with quantum states
in the Fock space. In Section 4, we show how our formalism allows to derive results for the
spinful case from a straightforward extension of the spinless case. The Green’s function neces-
sitates a distinct derivation of the fundamental connection between the slave-boson path integral
representation and the Hamiltonian scheme which is the object of Section 5.

2. Functional integral formulation of the two-site cluster model

2.1. Hamiltonian and radial slave boson representation

The single impurity Anderson model (SIAM) has been investigated with a variety of tech-
niques and for many different purposes. One of them consists of testing a new approach, in
particular against exact results. Here we adopt a similar spirit in order to link the evaluation of
the path integral representation of thermodynamic and dynamical quantities to their computation
through a straightforward diagonalization of the Hamiltonian. For the SIAM it reads:

(1)H =
∑
k,σ

c
†
k,σ (tk + εc)ck,σ +

∑
σ

d†
σ εddσ + V

∑
k,σ

(
c

†
k,σ dσ + h.c.

)+ U
∏

σ=↑,↓
d†
σ dσ ,

where U is the on-site repulsion, which is hereafter taken as infinite. The operators c
†
k,σ (ck,σ )

and d†
σ (dσ ) describe the creation (annihilation) of the band electrons and impurity electrons,

2 Note that a similar procedure can be set up without introducing slave bosons [26].
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respectively, with spin σ ; the kinetic energy in the band is denoted tk , and εc and εd are the band
and impurity energy levels, respectively. The hybridization is given by V .

The link between the two schemes is actually a complex procedure when the impurity is
coupled to an infinite bath. In order to lower this complexity we reduce the bath to a single
site, in which case the diagonalization of the Hamiltonian is easy and all relevant results can
be obtained analytically. Nevertheless, the problem is non-trivial when handled in the functional
integral formalism. The level of difficulty depends on the functional representation which is used.
For our purpose, a promising one is that of the slave boson (SB) representation in the radial gauge
[28]. It is based on the original representation by Barnes [15] and is augmented in that respect
that the underlying U(1) gauge symmetry, originally discussed by Read and Newns [27], is fully
implemented, as the phase of the bosonic field is integrated out from the outset. Accordingly, the
original field dσ is represented in terms of a real and a Grassmann field for each spin:

(2)dn,σ = xn+1fn,σ ,

(3)d†
n,σ = xnf

†
n,σ ,

where xn and xn+1 are the slave boson field amplitudes at time steps n and n + 1, and fn,σ is the
auxiliary fermion field. The shift of one time step for x in the relation for dn,σ is necessary to
obtain a non-zero value of the Grassmann integration for the Green’s functions −〈dσ (τ )d†

σ (0)〉
as clearly shown for its calculation in the atomic limit in Ref. [28]. More precisely, the path
integral is zero if xn+1 is replaced by xn in Eq. (2). Moreover, Eqs. (2) and (3) are required in
order to properly represent the hybridization term in the action as given below. Further detail on
this matter can be found in Ref. [28].

2.2. Action and partition function

Following Ref. [28], the path integral representation of the partition function of the two-site
cluster is given by:

(4)Z = lim
N→∞
W→∞

(
N∏

n=1

∫ ∏
σ

D
[
fn,σ , f †

n,σ

]
D
[
cn,σ , c†

n,σ

] ∞∫
−∞

δ dλn

2π

∞∫
−∞

dxn

)
e−S

where the action S may be written as the sum of a fermionic part, Sf , and a bosonic part, Sb ,
with

Sf =
∑
σ

Sf,σ =
N∑

n=1

∑
σ

[
c†
n,σ (cn,σ − Lccn−1,σ ) + f †

n,σ (fn,σ − Lnfn−1,σ )

+ V δxn

(
c†
n,σ fn−1,σ + f †

n,σ cn−1,σ

)]
,

(5)Sb =
N∑

n=1

[
δ
(
iλn(xn − 1) + Wxn(xn − 1)

)]
,

where Lc = e−δ(εc−μ), Ln = e−δ(εd−μ+iλn) ≡ Lde
−iδλn , λn is the time-dependent real constraint

field, n denotes the time steps, and δ ≡ β/N , with β = 1/kBT and N the number of time steps.
Here, Sf (Sf,σ ) is bilinear in the fermionic fields, and the corresponding matrix of the coefficients
will be denoted as [S] ([S0]). The positive real number W is sent to infinity at the end of the
calculation which guarantees the projection onto the physical subspace. The above treatment of
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the bosonic field is specific to radial slave bosons: no phase variable appears, and the above form
cannot be obtained by transformations of the conventional functional integral in the Cartesian
gauge without further assumptions (see Ref. [28]).

Inserting Eq. (5) into Eq. (4) yields a particularly suggestive expression of the partition func-
tion Z in the functional integral formulation, of the kind:

(6)Z = lim
N→∞
W→∞

P1 · · ·PN det[S],

where det[S] is the determinant of the fermionic matrix defined by Eq. (5); Pn is defined as:

(7)Pn =
+∞∫

−∞
δ

dλn

2π

+∞∫
−∞

dxn e−δ[iλn(xn−1)+Wxn(xn−1)],

and acts as a projector from the enlarged Fock space “spanned” by the auxiliary fermionic fields
down to the physical one. Explicitly, the action of these projectors on the various contributions
resulting from det[S] are found to be:

(8)Pn · 1 = 1,

(9)Pn · xn = 1,

(10)Pn · Ln = Ld,

(11)Pn · Lnxn = 0,

(12)Pn · L2
n = 0,

(13)Pn · x2
n = 1.

As will be seen below no further property of Pn will be needed for our purpose. We note
that there is some freedom in writing the projectors Pn, and alternative expressions exist [28].
However the properties Eqs. (8)–(13) are independent of the particular form of Pn.

3. Application to the spinless fermion case

We first consider a spinless fermion system for simplicity. Even though this is a non-
interacting problem, the level of complexity of its path integral representation following from
Eqs. (4)–(6), is equivalent to the one of a fully interacting problem. The matrix representation of
the action Sf,σ of such system is a 2N ×2N square matrix whose explicit expression in the basis
{cn,σ , fn,σ } reads:

(14)[S0] =

⎛
⎜⎜⎜⎝

12 −[L1]
[L2] 12

. . .
. . .

[LN ] 12

⎞
⎟⎟⎟⎠ ,

where 12 is the 2 × 2 identity matrix and [Ln] are 2 × 2 blocks given by:

(15)[Ln] =
( −Lc δV xn

δV xn −Ln

)
,

at time step n, 1 � n � N . Note that the matrix [S0] as defined in Eq. (14) has the same structure
as the action matrix S(α) in Chapter 2 of Ref. [30].
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3.1. Partition function

The partition function Z0 of the spinless fermion system has a form similar to that of Eq. (6)
except that det[S] is replaced by det[S0]. Its calculation is straightforward since we only have to
evaluate:

(16)Z0 = lim
N→∞
W→∞

P1 · · ·PN

∑
{P }

sgn(P )

2N∏
n=1

SP(n),n

where sgn(P ) is the signum function of permutations P in the permutation group S2N and Si,j

are the matrix elements of [S0]. Since the time step n is only involved in Si,2n−3 and Si,2n−2 we
may recast Eq. (16) into:

Z0 = lim
N→∞
W→∞

∑
{P }

sgn(P )P2(SP (1),1SP(2),2) · · ·

(17)×PN(SP(2N−3),2N−3SP(2N−2),2N−2)P1(SP (2N−1),2N−1SP(2N),2N).

At this point it is straightforward to verify that performing the projections only implies to
make use of Eqs. (8)–(10). We are left with:

(18)Z0 = lim
N→∞

∑
{P }

sgn(P )

2N∏
n=1

S′
P(n),n = lim

N→∞ det
[
S′

0

]
,

where S′
i,j are the elements of the 2N × 2N matrix [S′

0] defined as:

(19)
[
S′

0

]=

⎛
⎜⎜⎜⎜⎝

12 −[L]
[L] 12

. . .
. . .

[L] 12

⎞
⎟⎟⎟⎟⎠ .

In Eq. (19) the 2 × 2 matrix blocks [L] are similar to the blocks [Ln] except that Ln becomes
Ld, and xn is replaced by 1:

(20)
[
L
]=

(−Lc δV

δV −Ld

)
.

In the form of Eq. (18) it is now obvious that Z0 can be readily obtained. We notice that
Eq. (19) is the expected action matrix for this free fermionic problem. Besides, it is straightfor-
ward to extend the above calculation to the case of an arbitrary bath. Unfortunately the calculation
becomes considerably more involved in the spin 1/2 case, which leads us to develop another
strategy to that purpose. We first present it in the spinless case, before extending it to the spinful
case.

3.1.1. Generation and resummation of the world lines
Part of the difficulty in computing Z0 is that the time steps are mixed in the fermionic deter-

minant, in contrast to the bosonic part of the action represented by the projectors Pn, Eq. (6).
Therefore, transforming this determinant into a form where the time steps are decoupled, is
desirable. Achieving this amounts to handle all the world lines following from the action in
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Eq. (5) which represents a problem equivalent to a particle in a time-dependent field with a time-
dependent hopping amplitude.

In order to generate the dynamics of the world lines we first expand det[S0] along the first two
columns. We obtain:

det[S0] = 1 × M 2̄
1,2 + LcM

2̄
3,2 + δV x2M

2̄
4,2 − δV x2M

2̄
1,3 − L2M

2̄
1,4

(21)+ (
LcL2 − (δV x2)

2)M 2̄
3,4.

Here the notation is as follows: we construct a matrix similar to [S0], but we only include time
steps 1 and m > n. Mn̄

i,j is a minor of this matrix, where both the ith and j th rows, together with
the first and second columns, are removed.

At this stage we may proceed with the generation of the world lines. To that aim we need
to express the minors M 2̄ as linear combinations of the minors M3 which in turn can also be
expressed as similar linear combinations of the minors M4, and so forth up to the time step N .
The recurrence relation that we have established takes the following form:

(22)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mn̄
1,2

Mn̄
3,2

Mn̄
4,2

Mn̄
1,3

Mn̄
1,4

Mn̄
3,4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

[K(n+1),1]
[K(n+1),2]

[K(n+1),3]
[K(n+1),4]

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mn+1
1,2

Mn+1
3,2

Mn+1
4,2

Mn+1
1,3

Mn+1
1,4

Mn+1
3,4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the four matrix blocks

(23)
[
K(n),1]= (1),

(24)
[
K(n),2]= [

K(n),3]=
(

Lc δV xn

δV xn Ln

)
,

(25)
[
K(n),4]= (LcLn),

at time step n, 1 � n � N , define the 6×6 block diagonal matrix [K(n)]. 3 The matrices [K(n)]
describe the evolution of the two-site system along the world lines at each time step n. Iterating
this procedure up to time step N yields the determinant det[S0] in the following scalar product
form:

(26)det[S0] = (1, Lc, δV x2, −δV x2, −L2, LcL2 )

N∏
n=3

[
K(n)

]
⎛
⎜⎜⎜⎜⎜⎝

1
Lc

δV x1
−δV x1
−L1
LcL1

⎞
⎟⎟⎟⎟⎟⎠ ,

where the row vector is identified from Eq. (21) and the column vector has been obtained from
the last time step of the iteration process. Since the minus signs in Eq. (26) cancel, they can be
discarded for further considerations.

3 In Eq. (25) a term of order δ2, that vanishes in the limit N → ∞, is neglected.
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Fig. 1. Typical world lines of a two-site system. Thick (thin) lines denote the elementary processes with the electron
sitting on the impurity (“band”) site. Full (empty) circles denote the elementary processes with a hole sitting on the
“band” (impurity) site. Dashed lines represent hopping processes. The horizontal axis runs with the time steps, while in
the vertical direction different sites are displayed.

The above expression corresponds to the full resummation of the world lines, some of them
being represented in Fig. 1. The first contribution, labeled by 1, corresponds to the subspace
with zero electron while the last one, labeled by LcLd, corresponds to the subspace with two
electrons. In both cases the world lines are “straight”: namely no hopping process takes place,
and the system is right away in an eigenstate. In Eq. (26) they correspond to the terms involving
[K(n),1] and [K(n),4], respectively. The structure of the world lines in the one-electron subspace
is more intricate.

In order to gain an intuitive picture of these world lines let us first consider the trivial func-
tional integral representation of an interactionless electron where the f -field directly represents
the physical electron. We begin with the processes where the electron is on the “band” site at
time step one. If it stays there during all time steps, the resulting contributions Z(0)

c to Z0

will be given by Z(0)
c = ∏N

n=1 Lc, namely there is one factor Lc per time step and the world
line is straight. If, on the contrary, the electron hops onto the impurity at time step m, and
back to the “band” at time step m′, the corresponding contribution Z(2)

mm′,c to Z0 results in

Z(2)

mm′,c = (
∏m−1

n=1 Lc)δV (
∏m′−1

n=m+1 Ld)δV (
∏N

n=m′+1 Lc). Higher order processes in V follow ac-
cordingly. Complementary processes are those where the electron resides on the impurity at time
step one. The contributions of all these processes to Z0 will be weighted by both the number of
hopping processes and the difference in energy between the two levels. Assuming εd < εc results
in Lc < Ld, and for world lines involving the same number of hopping process, the world line
containing the largest number of factors Ld yields the largest contribution.

If we now return to our representation the contributions of the world lines to the partition func-
tion follow in a similar fashion, except for that (i) the factor corresponding to hopping process
at time step m is given by δV xm, and (ii) the particle line at time step n corresponding to the
electron sitting on the impurity site results in a factor Ln. Accordingly the contribution of the
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world line labeled by Lc in Fig. 1 to det[S0] is:

(27)

(
m−1∏
n=1

Lc

)
δV xm

(
m′−1∏

n=m+1

Ln

)
δV xm′

(
N∏

n=m′+1

Lc

)
,

while the world line labeled by Ld in Fig. 1 yields

(28)

(
m−1∏
n=1

Ln

)
δV xm

(
m′−1∏

n=m+1

Lc

)
δV xm′

(
N∏

n=m′+1

Ln

)
.

3.1.2. Connecting with the Hamiltonian language
We observe that the structure of Eq. (26) is not manifestly translationally invariant in time. For

this reason, we proceed to bring Eq. (26) into a form where no particular time step is singled out.
We note that the (row) column vector in Eq. (26) can be identified with the (rows) columns of
the matrix blocks [K(n)]—disregarding the cancelling minus signs. Accordingly, we can rewrite
Eq. (26) as:

det[S0] =
∑

{α2,...,αN }
K

(2),1
1α2

K(3),1
α2α3

· · ·K(N),1
αN−1αN

K
(1),1
αN 1

+
∑

{α2,...,αN }
K

(2),2
1α2

K(3),2
α2α3

· · ·K(N),2
αN−1αN

K
(1),2
αN 1

+
∑

{α2,...,αN }
K

(2),3
2α2

K(3),3
α2α3

· · ·K(N),3
αN−1αN

K
(1),3
αN 2

(29)+
∑

{α2,...,αN }
K

(2),4
1α2

K(3),4
α2α3

· · ·K(N),4
αN−1αN

K
(1),4
αN 1 ,

since the matrices [K(n)] are block diagonal and symmetric. Observe that the first and last lower
index in line three of Eq. (29) is not 1 but 2.

In Eq. (29), the first sum is equal to 1; the second and third sums are the diagonal elements
of the matrix product

∏N
n=1

( Lc δV xn

δV xn Ln

)
, respectively. The last sum is equal to LN

c
∏N

n=1 Ln.
Therefore Eq. (29) reduces to the trace of a 4 × 4 matrix that is the product of the N block
diagonal matrices [Kn] whose elements are [K(n),1], [K(n),2] and [K(n),4], respectively:

(30)det[S0] = Tr
N∏

n=1

[Kn],

where the matrix [Kn] is given by:

(31)[Kn] =
⎛
⎜⎝

1
Lc δV xn

δV xn Ln

LcLn

⎞
⎟⎠ .

Here, it is of interest to note that we have established a direct link between the world line
picture embodied in the 6 × 6 matrices [K(n)] and the simpler description in terms of quantum
states in the Fock space through the 4 × 4 matrices [Kn]. Indeed, when performing the world
line expansion using Eq. (26), the propagation matrices [K(n)] acquire an involved structure
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following from the initial conditions attached to the world lines. This is best seen in the one-
electron sub-space: at time-step one, the electron may either be on site c or on site d (see Fig. 1),
and the corresponding dynamics is governed by the matrices [K(n),2] and [K(n),3]. Summing up
all these world lines yields the one-electron contribution to det[S0]. Thus, one needs to handle
two 2×2 matrices, one in each case. In contrast, a single 2 × 2 matrix needs to be treated on the
level of Eq. (30).

In the above form of the fermionic determinant, Eq. (30), the time steps are decoupled, which
greatly simplifies the projection onto the physical Hilbert space. Indeed, in terms of the matrix [q]
given by:

(32)[q] ≡ Pn

([Kn]
)=

⎛
⎜⎝

1
Lc δV

δV Ld
LcLd

⎞
⎟⎠ ,

we obtain the partition function Z0 as:

(33)

Z0 = lim
N→∞ Tr

N∏
n=1

[q] = lim
N→∞ Tr

⎡
⎣14 − δ

⎛
⎜⎝

0
εc − μ −V

−V εd − μ

εc + εd − 2μ

⎞
⎟⎠
⎤
⎦

N

.

Namely, we recover here the Hamiltonian matrix in the Fock space. Therefore the expansion
of det[S0] in minors together with the recurrence relations, Eq. (22), allows for a correspondence
between the ensemble of the world lines and the Hamiltonian matrix. It is apparent that the
complexity of this interrelation depends on whether or not the system is in an eigenstate at time
step one. If this is the case, there is one single straight world line, and the connection is obvious.
Otherwise there is a proliferation of world lines, here controlled by the matrices [K(n),2] and
[K(n),3], which recombine to yield the contribution resulting from the 2 × 2 block of the matrix
[Kn]. A result equivalent to Eq. (33) was already obtained by Barnes [31], though in a totally
different fashion.

3.2. Hole density

In our path integral formalism, the expectation value of the amplitude of the slave boson field
at time step m is 〈xm〉. It simply represents the hole density 1−nd which can be written as 〈xm〉 =
〈b†

mbm−1〉 where b represents the original Barnes slave boson, and 〈xm〉 is finite. In contrast the
expectation values of the boson operators are zero: 〈b†

m〉 = 〈bm〉 = 0, for each time step because
of the fluctuations of their respective phase factor, in agreement with Elitzur’s theorem. Note that
expectation values of higher order moments of xm are also non-zero: 〈xa

m〉 = 〈xm〉 �= 0 for any
real positive parameter a.

In the case of spinless fermions we calculate 〈xm〉 as:

Z0〈xm〉 = lim
N→∞
W→∞

P1 · · ·PN

(
det[S0]xm

)

(34)= lim
N→∞
W→∞

P1 · · ·PN

(
xm Tr

N∏
n=1

[Kn]
)

.
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If we introduce the 4×4 matrix [QX] ≡ Pn(xn[Kn]) for all n, and [Q] the 4×4 diagonal
matrix that satisfies [q] = [UQ][Q][UQ]†, [UQ] being the eigenvector matrix, Eq. (34) becomes:

(35)Z0〈xm〉 = lim
N→∞ Tr

([Q]N−1[UQ]†[QX][UQ]).
Using Eqs. (8)–(10), and the δ → 0 limit, we obtain that the matrix [QX] reduces to the

representation of the hole density operator on the impurity in the Fock space:

(36)[QX]i,j = δi,1δj,1 + δi,2δj,2.

Correspondingly, Eq. (35) expresses 〈xm〉 as the averaged value of the hole density operator on
the impurity, represented by its matrix elements in the basis of the eigenstates of the Hamiltonian
([UQ]†[QX][UQ]) and weighted by the Boltzmann factors 1

Z0
[Q]N−1. Therefore, in contrast to

a Bose condensate, 〈xm〉 is generically finite and may only vanish for zero hole concentration.
Its numerical evaluation will be presented in a forthcoming paper [29].

3.3. Density–density correlation function

To obtain further insight into the approach, it is of interest to compute dynamical correlation
functions. Probably, the simplest one is provided by the hole density auto-correlation function on
the impurity site. When expressed in terms of eigenstates of the Hamiltonian, it takes the form:

(37)
〈(

1 − nd(mδ)
)(

1 − nd(δ)
)〉= 1

Z0

∑
α,α′

eδ(m−N)Eαe−mδEα′ ∣∣〈ψα|1 − nd|ψα′ 〉∣∣2,
where the eigenvalues Eα can be obtained from the diagonalization of the Hamiltonian. The
latter can be read from, e.g., Eq. (33).

In our path integral representation, the auto-correlation function 〈x1xm〉 may be written as:

(38)Z0〈x1xm〉 = lim
N→∞
W→∞

P1 · · ·PN

(
det[S0]x1xm

)

= lim
N→∞
W→∞

P1 · · ·PN

(
x1xm Tr

N∏
n=1

[Kn]
)

,

which reduces to

(39)Z0〈x1xm〉 = lim
N→∞ Tr

([QX][q]m−2[QX][q]N−m
)
,

after application of the projectors, Eqs. (8)–(13). If we now introduce the eigenvalues and eigen-
vectors of the Hamiltonian, Eq. (39) can be recast into:

(40)Z0〈x1xm〉 = lim
N→∞ Tr

([Q]N−m[UQ]†[QX][UQ][Q]m−2[UQ]†[QX][UQ]).
In this form we recognize the standard expression in Eq. (37). Indeed, the combination

[UQ]†[QX][UQ] represents the matrix elements of the hole density operator in the basis of the
eigenstates of the Hamiltonian, and the factors [Q] the exponential factors in Eq. (37).

4. Spin 1/2 system

We turn now to the spinful case. In this section, we show how results obtained for the spinless
system are relevant and useful to derive in a straightforward fashion the corresponding quantities
of the spin 1/2 system.
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4.1. Partition function

Since up- and down-spins are decoupled, and since the fermionic contribution to the action
is identical for both of them, we can write the fermionic determinant as: det[S] = det[S0]2. This
allows to express the determinant as the product of the traces of the matrix products

∏N
n=1[Kn].

By making use of the mixed product property of the Kronecker product: ([A][C]) ⊗ ([B][D]) =
([A] ⊗ [B])([C] ⊗ [D]), we obtain:

(41)det[S] = Tr
N∏

n=1

[Kn] ⊗ [Kn].

The partition function is obtained by combining Eqs. (41) and (6). Since the time steps are
decoupled, the evaluation of the integrals over the x and λ fields is straightforward. The tensorial
products [Kn]⊗[Kn] yield 16×16 matrices, which, after application of the projectors P1 · · ·PN ,
become block diagonal with a 4 × 4 zero block. They all reduce to the same 12 × 12 real sym-
metric matrix [k]. The matrix [k] represents the projection of the tensor product [Kn] ⊗ [Kn] for
all n as

(42)[k]i,j =Pn

([Kn]i1,j1 [Kn]i2,j2
)

with the convention

(43)i =
⎧⎨
⎩

4(i1 − 1) + i2 if (1 � i1 � 2 and 1 � i2 � 4),

and (i1 = 3 and 1 � i2 � 2),

i = i2 + 10 if (i1 = 4 and 1 � i2 � 2),

and similarly for j . The remaining matrix elements of the 16 × 16 matrix form a vanishing 4 × 4
separate block and have been discarded in Eq. (42). Finally we obtain a simple expression for the
partition function Z of the two-site single impurity Anderson model:

(44)Z = lim
N→∞ Tr[k]N.

with

(45)[k] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
Lc δV

δV Ld

LcLd

Lc 0 0 0 δV 0 0 0

0 L2
c LcδV 0 0 LcδV 0 0

0 LcδV LcLd 0 0 0 0 0

0 0 0 L2
cLd 0 0 0 0

δV 0 0 0 Ld 0 0 0
0 LcδV 0 0 0 LcLd 0 0
0 0 0 0 0 0 LcLd 0

0 0 0 0 0 0 0 L2
cLd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

When expanded to lowest order in δ, the blocks of [k] represent the Hamiltonian matrix in the
Fock space, in the same fashion as in Eq. (33). Diagonalizing these blocks yields the expected
expression of the partition function Z :
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Z = 1 + 3 exp
[−β(εc + εd − 2μ)

]+ 2 exp
[−β(2εc + εd − 3μ)

]

+ 2
∑

j=±1

exp

[
−β

(
εc + εd

2
− μ + j

√(
εc − εd

2

)2

+ V 2

)]

(46)+
∑

j=±1

exp

[
−β

(
3εc + εd

2
− 2μ + j

√(
εc − εd

2

)2

+ 2V 2

)]
.

Through the exact calculation of the functional integrals we have recovered this result that can
also be derived from the diagonalization of the Hamiltonian. Note that V is multiplied by differ-
ent coefficients in the one-particle and two-particle states. In contrast to the spinless case Eq. (33)
the eigenvalues of the Hamiltonian matrix entering Eq. (45) result from entangled states, the en-
tanglement being achieved by the projection onto the physical Fock space in Eq. (42). Note that
we here obtained the Hamiltonian matrix without having explicitly used any basis of the Fock
space. It naturally arose as the projected tensor product of the basis appropriate to the spinless
case.

4.2. Hole density and auto-correlation function

In the spinful case, the hole density 〈xm〉 is given by:

Z〈xm〉 = lim
N→∞
W→∞

P1 · · ·PN

(
det[S]xm

)

(47)= lim
N→∞
W→∞

P1 · · ·PN

(
xm Tr

N∏
n=1

[Kn] ⊗ [Kn]
)

.

For the spin 1/2 case, the counterpart of the matrix [QX] is the matrix [KX] ≡ Pn(xn[Kn] ⊗
[Kn]). It is a 12 × 12 matrix, the elements of which may be expressed as:

(48)[KX]i,j = δi,1δj,1 + δi,2δj,2 + δi,5δj,5 + δi,6δj,6,

using Eqs. (8)–(13), in the δ → 0 limit. In this form it represents the hole density operator on the
impurity site in the Fock space. Thus Eq. (47) becomes

(49)Z〈xm〉 = lim
N→∞ Tr

([KX][k]N−1),
which has exactly the same form as for the spinless case and a similar interpretation applies.

As for auto-correlation functions such as 〈x1xm〉, we can adopt the same procedure to obtain

(50)Z〈x1xm〉 = lim
N→∞ Tr

([KX][k]m−2[KX][k]N−m
)
,

which, when again introducing the eigenstates of the Hamiltonian, can also be identified to the
ordinary expression in Eq. (37). On the formal level, the use of the slave boson representation
in the radial gauge greatly simplifies the evaluation of the dynamical correlation functions of the
operators that can be represented by the radial slave bosons.
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5. Green’s function

We turn to the impurity Green’s function Gσ (q − p). When expressed in terms of the eigen-
values of the Hamiltonian, Eα—which can be read from, e.g., Eq. (46) for spin 1/2—it reads:

(51)ZGσ (q − p) = −
∑
α,α′

eδ(q−N−p)Eα 〈ψα|dσ |ψα′ 〉eδ(p−q)Eα′ 〈ψα′ |d†
σ |ψα〉.

In the radial gauge the creation and annihilation operators are expressed in terms of auxiliary
fields as given in Eqs. (2) and (3). We obtain Gσ (q − p) as follows:

ZGσ (q − p) = − lim
N→∞
W→∞

N∏
n=1

∫ ∏
σ ′=↓,↑

D
[
fn,σ ′, f †

n,σ ′
]
D
[
cn,σ ′, c†

n,σ ′
]

(52)×
∞∫

−∞

δ dλn

2π

∞∫
−∞

dxn e−Sfq,σ f †
p,σ xq+1xp,

in the language of functional integrals. Note that the three other Green’s functions involving the
three expectation values: 〈dq,σ c

†
p,σ 〉, 〈cq,σ d

†
p,σ 〉 and 〈cq,σ c

†
p,σ 〉, can be calculated in the same

fashion, except that they are simpler to evaluate since they contain at most one amplitude of the
slave bosonic field, x, unlike the one we chose to study.

5.1. Derivation of the pseudofermion Green’s function

Following standard procedures (see, e.g., Negele and Orland [30]), we cast Eq. (52) into the
form:

(53)ZGσ (q − p) = − lim
N→∞
W→∞

P1 · · ·PN

(
det[S0]Gp,qxpxq+1

)
,

where Gp,q is the minor of one of the matrix elements of the 2×2 block that shares the same row
labels as [Lp] and column labels as [Lq+1] in the matrix [S0] as defined in Eq. (14) (if q = N then
the block to be considered is [L1]). The minor Gp,q is the unprojected pseudofermion Green’s
function.

For the subsequent calculations we set p = N − m + 1 and q = N . The minor GN−m+1,N can
be calculated as:

(54)GN−m+1,N = ∂

∂a
det

[
S(a;m)

]
,

where [S(a;m)] is given by:

(55)
[
S(a;m)

]
i,j

= [S0]i,j + aδi,2(N−m+1)δj,2N .

To calculate det[S(a;m)], we find it convenient to move the last two columns to the left in the
matrix [S(a;m)] in Eq. (55). In the same fashion as for det[S0], we expand det[S(a;m)] along
the first two columns. Once the derivative of det[S(a;m)] with respect to a is calculated we
obtain the three contributions:

(56)
∂

∂a
det

[
S(a;m)

]= −1 ×M1̄
1,a + LcM1̄

Lc,a
+ δV x1M1̄

δ,a,
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where the three minors M1̄
1,a , M1̄

Lc,a
and M1̄

δ,a are defined in Appendix A. They can be ex-

pressed as linear combinations of M2̄
1,a , M 2̄

Lc,a
and M2̄

δ,a in the same fashion as for the minors
defined in the previous sections. They also follow a recurrence relation that reads:

(57)

⎛
⎜⎝

Mn̄
1,a

Mn̄
Lc,a

Mn̄
δ,a

⎞
⎟⎠=

⎛
⎝1 0 0

0 Lc δV xn+1

0 δV xn+1 Ln+1

⎞
⎠
⎛
⎜⎜⎝
Mn+1

1,a

Mn+1
Lc,a

Mn+1
δ,a

⎞
⎟⎟⎠ ,

up to time step n = N − m. Here we recognize the blocks defined in Eqs. (23) and (24) entering
the matrix [K(n+1)] which we encountered during the evaluation of the partition function. Then,

MN−m
1,a , MN−m

Lc,a
and MN−m

δ,a are linear combinations of the minors MN−m+1
1,4 and MN−m+1

3,4 :

(58)

⎛
⎜⎜⎝
MN−m

1,a

MN−m
Lc,a

MN−m
δ,a

⎞
⎟⎟⎠=

⎛
⎝−1 0

0 Lc

0 δV xN−m+1

⎞
⎠(

MN−m+1
1,4

MN−m+1
3,4

)
.

The minors Mn̄
1,4 and Mn̄

3,4 are tightly related to Mn̄
1,4 and Mn̄

3,4: they are also built on a matrix

similar to [S0], but with the difference that only the time steps m with m > n are included. Mn̄
i,j

is a minor of this matrix, where the first two columns and both the ith and j th rows are removed.

Accordingly, the recurrence relations for MN−m+1
1,4 and MN−m+1

3,4 are also given in Eq. (22) and

hence we also need to introduce the minor MN−m+1
1,3 . Thus, their evaluation involves the blocks

of Eqs. (24) and (25), which enter the matrix [K(n+1)] jointly with the last three components of
the column vector in Eq. (26), taken at time step N . Therefore, to calculate GN−m+1,N as defined
above we have to consider the following set of six minors: M1,a , MLc,a , Mδ,a for time steps
1 � n � N − m, and M1,3, M1,4 and M3,4 for time steps N − m + 2 � n � N .

Combining the above steps, we can write the unprojected pseudofermion Green’s function as:

GN−m+1,N = Tr

[[
K

(N)
f

]×
(

N−m+2∏
n=N−1

[
K(n)

>

])

(59)× [
K

(N−m+1)

f †

]×
(

1∏
n=N−m

[
K(n)

<

])]
,

where the time steps enter in decreasing order. The 6 × 6 matrices [K(N)
f ] ([K(N−m+1)

f † ]) repre-
senting the annihilation (creation) of a fermion in the world line language are given by[

K
(N)
f

]
i,j

= δV xNδi,1δj,4 + LNδi,2δj,5 + LcLNδi,2δj,6,

(60)
[
K

(N−m+1)

f †

]
i,j

= 1δi,5δj,1 + Lcδi,6δj,2 + δV xN−m+1δi,6δj,3.

In Eq. (59), [K(n)
< ] is a 6 × 6 block diagonal matrix the non-zero elements of which are the two

blocks [K(n),1] and [K(n),2] defined in Eqs. (23) and (24). The matrix [K(n)
> ] is also 6 × 6 block

diagonal matrix determined by

(61)
[
K(n)

>

]= [
K(n)

]− [
K(n)

<

]
.
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Eq. (59) can also be interpreted on the basis of Fig. 1. In fact, computing 〈dN,σ d
†
N−m+1,σ 〉 can

be visualized as the resummation of particular subsets of world lines. They are naturally split into
sets involving Ld for N − m + 2 < n < N − 1, in which case [K(n)

> ] is controlling the dynamics
of the world lines; and sets excluding Ld for 1 < n < N − m, in which case [K(n)

< ] controls the
dynamics. The transition from the first (second) subset to the second (first) is taken care of by
the matrix [K(N−m+1)

f † ] ([K(N)
f ]).

This expression for the Green’s function in the world line language can also be related to its
counterpart in the Hamiltonian language. Indeed, the trace of the matrix product in Eq. (59) can
be written in terms of 4 × 4 matrices:

(62)GN−m+1,N = Tr

(
[FN ] ×

(
N−m+2∏
n=N−1

[
K>

n

])× [ΦN−m+1] ×
(

1∏
n=N−m

[
K<

n

]))
,

where

(63)

[ΦN−m+1] =
⎛
⎜⎝

0 0 0 0
0 0 0 0
1 0 0 0
0 Lc δV xN−m+1 0

⎞
⎟⎠ and [FN ] =

⎛
⎜⎝

0 δV xN LN 0
0 0 0 LcLN

0 0 0 0
0 0 0 0

⎞
⎟⎠ ,

characterize the creation and annihilation of an electron, respectively. The matrices [K<
n ] and

[K>
n ] result from [Kn] as:[

K<
n

]
i,j

= [
Kn

]
i,j

− LcLnδi,4δj,4,

(64)
[
K>

n

]
i,j

= [
Kn

]
i,j

− δi,1δj,1.

5.2. Spinless case

Now that the unprojected pseudofermion Green’s function has been converted to a compact
form, we can evaluate the physical Green’s function which, in the spinless case, reads:

Z0G0(q − p) = − lim
N→∞
W→∞

P1 · · ·PN Tr

[
x1xN−m+1[FN ] ×

(
N−m+2∏
n=N−1

[
K>

n

])

(65)× [ΦN−m+1] ×
(

1∏
n=N−m

[
K<

n

])]
.

With the application of the projectors P1 · · ·PN , we obtain:

(66)Z0G0(q − p) = − lim
N→∞ Tr

([QX][F][q>
]m−2[φ][q<

]N−m−1)
,

where [QX] is given by (36). The matrices [φ] and [F ] are defined as [φ] ≡PN−m+1(xN−m+1 ×
[ΦN−m+1]) and [F] ≡ PN([FN ]), respectively. They can be read off from Eq. (63) if x is
replaced by 1, and Ln by Ld. Note that [φ] = [F ]† only in the limit δ → 0 when Lc → 1
and Ld → 1. In the limit δ → 0, they coincide with the matrix representations of the opera-
tors f † and f , respectively. The matrices [q<] and [q>] are given by [q<] ≡ Pn([K<

n ]) and
[q>] ≡Pn([K>

n ]), respectively, and are easily related to [q]:
(67)

[
q<

] = [q]i,j − LcLdδi,4δj,4,
[
q>

] = [q]i,j − δi,1δj,1.
i,j i,j
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we can now reshape Eq. (66) into the form:

Z0G0(q − p) = − lim
N→∞ Tr

[[
Q<

]N−m−1([UQ]†[QX][F][UQ])
(68)×[

Q>
]m−2([UQ]†[φ][UQ])],

where [Q<] and [Q>] are obtained from the diagonalization of [q<] and [q>], respectively. Note
that the same matrix [UQ] diagonalizes the matrices [q], [q<], and [q>].

In Eq. (68), the product [UQ]†[QX][F][UQ] is the representation of the annihilation opera-
tor d in the basis of the eigenstates of the Hamiltonian, while [UQ]†[φ][UQ] represents d†, as
can be easily verified explicitly in the limit δ → 0. The factors [Q>] and [Q<] determine the
time evolution. Therefore Eq. (68) can be easily identified with Eq. (51). Note that all eigen-
values seem to contribute to the Green’s function in Eq. (51), and only the matrix elements of
the creation (annihilation) operators restrict the set of eigenvalues that effectively contribute to
the Green’s function. In contrast, in Eq. (68) some of these restrictions are contained in the fac-
tors [Q>] and [Q<] which replace the full set of eigenvalues, that would be contained in the
matrix [Q].

It is tempting to compare the physical electron Green’s function (including the factors x) to
the projected pseudofermion Green’s function (without the factors x). Straightforward algebra
yields:

(69)lim
δ→0

PN−m+1
(
xN−m+1[ΦN−m+1]

)= lim
δ→0

PN−m+1
([ΦN−m+1]

)
,

and

(70)lim
δ→0

P1PN

(
x1
[
K<

1

][FN ])= lim
δ→0

P1PN

([
K<

1

][FN ]).
Therefore, as a particularity of the spinless case, the factors x in Eq. (65) play no role, and

both Green’s functions coincide. Consequently the same result for the physical electron Green’s
function would have been obtained by substituting x by 1 in Eqs. (2) and (3), and accordingly
in the fermionic contribution to the action Sf . Incidentally, such a procedure is in complete
agreement with the original suggestion by Kotliar and Ruckenstein [17] to modify the expression
of the physical electron operator by introducing square root factors, when extended to the spinless
case.

5.3. Spin 1/2 system

Again, as shown below, results obtained for the spinless system can be immediately applied
to derive the Green’s function in the spinful case. Inserting Eq. (59) into Eq. (53) yields:

ZGσ (q − p) = − lim
N→∞
W→∞

P1 · · ·PNx1xN−m+1

× Tr

[([KN ] ⊗ [FN ])×
(

N−m+2∏
n=N−1

[Kn] ⊗ [
K>

n

])

(71)× ([KN−m+1] ⊗ [ΦN−m+1]
)×

(
1∏

n=N−m

[Kn] ⊗ [
K<

n

])]
,
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which after application of the projectors P1 · · ·PN becomes:

(72)ZGσ (q − p) = − lim
N→∞ Tr

([KX][ξ ][k>
]m−2[ϕ][k<

]N−m−1)
,

with the matrices [ϕ] = PN−m+1(xN−m+1[KN−m+1]⊗[ΦN−m+1]) and [ξ ] = PN([KN ]⊗[FN ]).
Leaving out entries which do not contribute in the limit N → ∞ they read:

[ϕ]i,j = 1δi,3δj,1 + Lc(δi,4δj,2 + δi,7δj,5) + L2
cδi,8δj,6,

(73)[ξ ]i,j = Lcδi,1δj,3 + LcLd(δi,2δj,4 + δi,5δj,7) + L2
cLdδi,6δj,8.

The matrices [k<] and [k>] are given by [k<] ≡Pn([Kn]⊗ [K<
n ]) and [k>] ≡Pn([Kn]⊗ [K>

n ]),
respectively. The asymmetry in the representation of the physical electron creation and annihila-
tion operators (Eqs. (2) and (3)) is also apparent in Eq. (72). Indeed the operator d†

σ is represented
by the matrix [ϕ], and dσ by the product of the matrices [KX][ξ ]. In contrast to the spinless case
the factors x in Eq. (71) play a role, and the projected pseudofermion Green’s function and phys-
ical electron Green’s function differ.

6. Conclusion

In summary we have established a new scheme which provides a fundamental connection
between the representation of expectation values and dynamical correlation functions in the
Hamiltonian language and their counterpart in the slave-boson path integral formulation. This
has been achieved for the U = ∞ spin 1/2 single impurity Anderson model through their exact
evaluation for a two site cluster. The new scheme allowed us to compute the partition function
and the hole density, expressed as the expectation value of the radial slave field x. Moreover the
Green’s function and the hole auto-correlation function were evaluated within this scheme.

We verified that the exact expectation value of the slave boson amplitude field x is finite, as
postulated in mean-field calculations, even in this extreme quantum case. It is therefore not re-
lated to the condensation of a boson, which would necessarily vanish in such a calculation. The
suppression of the condensation originates in the use of the radial representation, where the phase
of the boson is integrated out in the first place. We note that higher slave boson correlation func-
tions such as 〈xn(τ )xm(0)〉 reduce to 〈x(τ)x(0)〉. Therefore the field x bears little resemblance
to ordinary complex bosonic fields. The corresponding calculations follow a similar scheme as
those for the partition function.

Through an independent calculation we obtained both the physical electron and pseudofer-
mion Green’s functions. In the spinless case, the projected pseudofermion Green’s function is
finite, and it is identical to the one of the physical electron. Therefore a “perturbation theory”-like
factorization of the latter as a product of the boson and pseudofermion Green’s functions does
not appear appropriate in general, but it may still be valid in particular frequency ranges, such as
the low frequency domain. In the latter case, a mean-field decoupling looks more appropriate. It
is likely to provide a better agreement with the exact result if the square root factors, originally
proposed in [17], are introduced.

It is also of great importance to understand that our formalism allows immediate and straight-
forward use of results, which were obtained for the spinless system, in order to derive those of
the spinful case: the proposed scheme first treats the coherent states of fermions in the two spin
sectors (up and down spin) separately. The world lines of particles with different spin projection
evolve independently. Only in a final step, when the full fermionic determinant is built from the
product of the determinants of the two spin species, the projection onto the physical space with
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no double occupancies is straightforwardly achieved through the projection rules, Eqs. (8)–(13),
applied to the entries of the determinant. Here, the projection is easily accomplished in the Fock
space which, when directly enforced for the world lines, produces a complicated entanglement
of coherent states. For larger systems the exact resummation of the world lines and their re-
spective projection—as presented in, e.g., Eqs. (39), (50) and (66)—is difficult on the analytical
level, but probably not on the numerical level. As an alternative to the exact calculation one may
consider a plain saddle point approximation scheme when tackling spatially extended systems.
Unfortunately the latter fails to reproduce the exact result even for the two-site problem, and it
will be necessary to determine appropriate quasiparticle weight factors from the two-site solution
within an effective slave boson approach, similar to the Kotliar–Ruckenstein scheme [17]. This
challenge will be addressed in future work [34].

The extension of the above scheme to the spin rotation invariant formulation of the t–J model
where the phases of all the bosonic fields can be gauged away is desirable [18]. Work along this
line is in progress.

One may wish to extend such a calculation to other representations of this model, such as
the ones based on Hubbard X-operators [32]. This unfortunately poses another challenge, since
the “angular part” of the respective action is intrinsically off diagonal in time, which makes
the integral over the angular variables significantly more difficult. This also holds true for the
Kotliar–Ruckenstein representation where one of the bosonic fields is complex [17,18,33]. Al-
ternatively one may also consider weak-coupling approaches, such as the Hubbard–Stratanovich
decoupling of the interaction term in the charge channel. Even if it were possible to evaluate the
partition function exactly, using the corresponding form of Eqs. (6), (7) and (41), it would still
require a major effort to obtain dynamical response functions. Nevertheless such a calculation
deserves further study.
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Appendix A. Expression of the minors M1̄
1,a , M1̄

Lc,a
and M1̄

δ,a

The minors M1̄
1,a , M1̄

Lc,a
and M1̄

δ,a in Eq. (56) are obtained from the expansion of
det[S(a;m)] given below for p = N − m + 1. Their definition follows as:

• M1̄
1,a by expanding det[S(a;m)] along the two first columns and eliminating the (2N −1)th

and 2pth lines.
• M1̄

δ,a by expanding det[S(a;m)] along the two first columns and eliminating the second and
2pth lines.

• M1̄
Lc,a

by expanding det[S(a;m)] along the two first columns and eliminating the first and
2pth lines.

In the expansion of det[S(a;m)] M1̄
1,a is multiplied by [S(a;m)]2N−1,1 = 1 and −[S(a;

m)]2p,2 = −a, M1̄
δ,a is multiplied by −[S(a;m)]2,1 = δV x1 and [S(a;m)]2p,2 = a, and M1̄
Lc,a
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is multiplied by [S(a;m)]1,1 = Lc and [S(a;m)]2p,2 = a. The three minors above satisfy a re-
currence relation given in Eqs. (57) and (58), while det[S(a;m)] reads:

det
[
S(a;m)

]

(A.1)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Lc −δV x1 1 0

−δV x1 L1 0 1

−Lc δV x2

δV x2 −L2

. . .
. . .

0 0 . . . −Lc δV xp 1 0

0 a . . . δV xp −Lp 0 1

−Lc δV xp+1

δV xp+1 −Lp+1

. . .
. . .

1 0

0 1

1 0 −Lc δV xN

0 1 δV xN −LN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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